If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+40q=0
a = 1; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·1·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*1}=\frac{-80}{2} =-40 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*1}=\frac{0}{2} =0 $
| x=57/2 | | 13x-118=98+7x | | C=21+16n | | 14p−11p=12 | | d^2+19d=0 | | 3/5(10x+5)=4 | | x/2=7-1 | | 8.19x+9=67.0761+3x | | x=2(7-1) | | u-7.4=3.52 | | (5z/3)-4=1 | | -46-6n=-30 | | 2/4=v/14 | | x=(7-1)2 | | 13=s+3 | | 3x3x+8=83 | | x=49(x+5)-2x+11 | | 13=s+3 | | 200,000+10x+2,500=10x+2x-1,800 | | x-20=3x+14 | | 7(-8)-28=x | | 7=x+5 | | 5x5=7x5 | | 27=2-5w | | 8m-11=-1 | | -30=-6/5w | | 5.7(x-1)=-0.3+36.3 | | 3x=356 | | 13=4x+3+3x | | 27=2−5w | | z–13=–26 | | 2x-60=490 |